MICROORGANISMS AND AMPHIBIANS

The life cycle of the chytrid fungus *Batrachochytrium dendrobatidis* begins with a motile zoospore, which is the infective stage of this pathogen. During the course of infection, chytrid zoospores enter skin cells on the amphibian and the fungus grows and develops as it feeds on keratin within the skin cells. Eventually discharge tubes form, which extend to the surface of the cells and release mature zoospores to begin the life cycle again.
MICROORGANISMS AND AMPHIBIANS

Batrachochytrium dendrobatidis is the Chytrid fungus that infects and kills amphibian species. It is believed to be responsible for the deaths of innumerable frogs and the extinction of several species. The fungus grows and feeds on the epidermis of frogs before releasing zoospores into the water to begin the cycle again. One droplet of water can contain many thousands of zoospores, each able to infect a new waterway and a new population of frogs.

Global Distribution of Chytrid
By 2004 the Chytrid fungus was widely distributed around the world and had been identified in three separate wild populations in New Zealand including two species of introduced frog and, more importantly, the native, and nationally critical Archey’s Frog (Leiopelma archeyi). In many countries this spread has been traced to the pet trade.

<table>
<thead>
<tr>
<th>Introduced Species</th>
<th>Green and Golden Bell Frog</th>
<th>Whistling Tree Frog</th>
<th>Southern Bell Frog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coastal South-Eastern Australia, and Northern North Island of New Zealand.</td>
<td>Coastal Southern Australia and the South Island of New Zealand.</td>
<td>Southern Australia and throughout New Zealand.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Native Species</th>
<th>Archey’s Frog</th>
<th>Hochstetter’s Frog</th>
<th>Hamilton’s Frog</th>
<th>Maud Island Frog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Found in Coromandel and in one site west of Te Kuiti.</td>
<td>Occurs in several locations around the upper half of the North Island.</td>
<td>Only found on Stephens Island in Cook Strait.</td>
<td>Located on Maud Island and Motuara Island in the Marlborough Sounds.</td>
</tr>
</tbody>
</table>

Amphibians of New Zealand
There are now just four of the original eight species of native frogs, and three species of introduced frogs in New Zealand. All of New Zealand’s unique native species (in the genus Leiopelma), as well as the Green and Golden Bell Frog and Southern Bell Frog (genus Litoria), are listed as threatened or endangered in the recent IUCN Global Amphibian Assessment.
MICROORGANISMS AND AMPHIBIANS

Microorganisms are controlled by means of physical agents and chemical agents. Physical agents include such methods of control as high or low temperature, desiccation, osmotic pressure, radiation, and filtration. Control by chemical agents refers to the use of disinfectants, antiseptics and antibiotics.

Describe how to conduct a fair test to identify the best of two physical agents that could be used to stop the spread of Chytrid fungus.

Reagents:
Distilled water, Fungal sample: 25mL of water containing B. dendrobatidis from an infected frog, Physical agents: eg heat, cold, visible light, UV light.

Equipment:
Permanent marker, sterile petri dish (3) containing agar with keratin nutrient, test tubes, inoculating needles, scotch tape.

1. Identify two physical agents that you believe will be effective in killing B. dendrobatidis.

2. State your hypothesis (your best educated guess that will answer the investigation):

3. Reasons for supporting your hypothesis:

4. Why does the sterile agar solution contain keratin?

5. Where would this be found naturally?
MICROORGANISMS AND AMPHIBIANS

6. ______________________________________________________________________

7. ______________________________________________________________________

8. ______________________________________________________________________

9. ______________________________________________________________________

10. ______________________________________________________________________

11. ______________________________________________________________________

12. ______________________________________________________________________

13. ______________________________________________________________________
MICROORGANISMS AND AMPHIBIANS

Biosecurity New Zealand are currently researching suitable methods to ensure that Chytrid fungus is not spread further throughout New Zealand. One possible ‘protocol’ is based on the “Check, Clean, Dry” message already in use to combat the spread of Didymo (rock snot), as shown below. Before such a protocol can be released it needs to be thoroughly tested to ensure that it is easy to perform, it will reliably kill *B. dendrobatidis*, and has no harmful effects on the environment.

14. What is the chemical agent suggested to clean away the Chytrid fungus?

15. Which two factors need to be controlled to make sure this agent will work?

16. Which two physical agents are recommended to clean away the Chytrid fungus?

17. Which two factors need to be controlled to make sure each of these agents will work?

18. If cleaning is not possible what method should be used?

19. How long must this be done for to be effective?